

BLACK BOX MODELLING OF HARD NONLINEAR BEHAVIOR IN THE FREQUENCY DOMAIN

J. Verspecht*, D. Schreurs**, A. Barel***, B. Nauwelaers**

* Hewlett-Packard NMDG, VUB-ELEC, Pleinlaan 2, 1050 Brussels, Belgium,
tel. 32-2-629.2886, fax 32-2-629.2850, email janv@james.belgium.hp.com

** K. U. Leuven, ESAT-TELEMIC, Kardinaal Mercierlaan 94, B-3001 Heverlee, Belgium

*** Vrije Universiteit Brussel, ELEC, Pleinlaan 2, 1050 Brussels, Belgium

Abstract — A black box model is proposed to describe nonlinear devices in the frequency domain. The approach is based upon the use of describing functions and allows a better description of hard nonlinearities than an approach based upon the Volterra theory. Simulations and experiments are described illustrating the mathematical theory.

I. Introduction

Describing and measuring nonlinear behavior of electrical components is important for many applications. The input signals are often very well approximated by a sum of sinewaves, a frequency domain approach is then preferred.

Two kinds of black box models are used in practice for the description of nonlinear systems in the frequency domain: Volterra series (cf. the VIOMAP model [1]) and describing functions [2]. The Volterra series approach can handle more than one spectral component present at the input, but the approach only works for weakly nonlinear behavior. The approach of the describing functions does not have this restriction. The idea is to write a spectral output component as a general function of the spectral input components. In practice this technique is only used when there is only one spectral component present at the input. In this text the describing function approach for several spectral input components is developed in order to model hard nonlinear behavior in the frequency domain [3].

II. Theory

A. Expressing time invariance

Consider a nonlinear device with at his input several spectral components. For simplicity it is assumed that the frequencies of the spectral components are commensurate, such that each frequency can be assigned an integer index, which equals the frequency divided by the fundamental frequency. Excluding chaotic and subharmonic behavior, the output spectrum will consist out of spectral components with frequencies which are integer multiples of the fundamental frequency. This implies that an integer index can be assigned to each spectral output component.

Consider N spectral input components where the i^{th} component is represented by the complex number I_{α_i} , with α_i equal to the frequency index. If one denotes the output component with frequency index k by O_k , one can write:

$$O_k = F_k(I_{\alpha_1}, I_{\alpha_2}, \dots, I_{\alpha_N}). \quad (1)$$

$F_k(\dots)$ represents the describing function which maps the N complex numbers representing the input signal into the k^{th} spectral component of the output signal. It can be shown that expressing that applying a delay at the input has to correspond to the same delay at the output (time invariance) results in:

$$O_k = (V_N)^k G_k(A_1, \dots, A_N, V_1, \dots, V_{N-1}) \quad (2)$$

TH
3F

where G_k represents an arbitrary function (called describing function) and where $(A_1, \dots, A_N, V_1, \dots, V_N)$ are found by applying the following transformation on $(I_{\alpha_1}, I_{\alpha_2}, \dots, I_{\alpha_N})$:

$$A_i = |I_{\alpha_i}|, \quad (3)$$

$$V_i = P_1^{s_{1i}} \dots P_N^{s_{Ni}}, \quad (4)$$

with $P_i = e^{j\phi(I_{\alpha_i})}$, and with (s_{1i}, \dots, s_{Ni}) for i ranging from 1 to N equal to $N-1$ linearly independent integer solutions of the equation:

$$\alpha_1 s_{1i} + \dots + \alpha_N s_{Ni} = 0, \quad (5)$$

and with (s_{1N}, \dots, s_{NN}) an integer solution of the equation:

$$\alpha_1 s_{1N} + \dots + \alpha_N s_{NN} = 1. \quad (6)$$

B. Correspondence with the Volterra series

It can be shown that the approach based upon Volterra series (VIOMAP) is a subset of the describing function approach (2), where the class of functions G_k is constrained to a limited set of polynomials.

III. Simulations

A. Introduction

Simulations illustrate the above. A static nonlinearity is chosen described by:

$$y = \tanh(x). \quad (7)$$

A simulation of an harmonic distortion analysis is performed on this system (peak amplitude of the input sinusoidal wave swept from 0 to 10). For each amplitude the value of several harmonics is calculated. A plot of the fundamental and some harmonics is shown in Fig.1.

B. Comparing two parametric models

The performance is compared of two kinds of parametric models to be fitted on the data: a VIOMAP model and a rational model, based upon

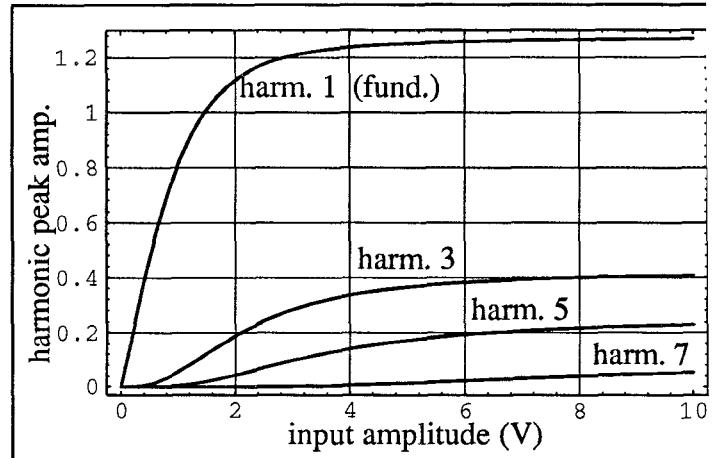


Fig.1 Harmonic distortion (harm. 1, 3, 5, 7).

describing functions. The models are defined as (N equals the number of model parameters):

the VIOMAP polynomial (VIO):

$$O_k = (P_1)^k \left(\sum_{i=0}^N K_i A_1^{2i+k} \right), \quad (8)$$

the rational model (RAT):

$$O_k = (P_1)^k \left(\sum_{i=0}^N K_i A_1^i \right) \left(\frac{A_1^k}{1 + A_1^k} \right). \quad (9)$$

The parameters K_i of the models (for different k and N) are estimated by means of a least-square fit to 200 uniformly sampled points of the harmonic distortion analysis characteristics. Note that the rational model is chosen such that it behaves like a k^{th} order nonlinearity for A_1 much smaller than 1, and as general polynomial for A_1 much greater than 1. This way the model behaves like a classical Volterra approach for small input amplitudes, but has more flexibility at larger amplitudes, where the Volterra approach fails. Two measures are used to compare the models: the root-mean-square error (e_{rms}) and the maximum error (e_{max}). Values are given in Table 1 and Table 2.

The simulation reveals that, for the same number of parameters, RAT outperforms VIO.

Table1 Quality of the models for the fundamental (k=1).

N	e _{rms} VIO	e _{rms} RAT	e _{max} VIO	e _{max} RAT
1	-11dB	-27dB	-3dB	-18dB
3	-19dB	-35dB	-9dB	-20dB
5	-26dB	-41dB	-15dB	-27dB

Table2 Quality of the models for the 7th harmonic (k=7).

N	e _{rms} VIO	e _{rms} RAT	e _{max} VIO	e _{max} RAT
1	-28dB	-31dB	-19dB	-22dB
5	-39dB	-65dB	-29dB	-52dB
9	-29dB	-91dB	-20dB	-78dB

IV. Experiments

A. Introduction

A resistive mixer [4] experiment is performed on a broadband field effect transistor using a “nonlinear network” analyzer [5][6]. The local oscillator (lo) signal (3GHz) is a voltage wave arriving at the gate of the transistor, while the rf-signal (4GHz) is a voltage wave send towards the drain of the transistor (no dc-biasing present). The scattered voltage wave at the drain contains a lot of intermodulation products, with the two most important ones being the intermodulation products at 1GHz and 7GHz. To illustrate the theory, only the mixing product at 1GHz is considered.

B. The measurements

A set of two-tone measurements is performed on the “resistive mixer”: the local oscillator as well as the rf-signal peak amplitude are swept from about 100mV to 800mV. There are 16 different values for the local oscillator power and 21 for the rf-signal amplitude, logarithmically distributed over the range. At each power setting the phase relationship between the two components

is randomized 30 times. This results in a set of 21 times 16 times 30 equals 10080 measurements.

C. Modelling

Two models are fit on the measured data: a VIOMAP and a rational model. The polynomial degree of the VIOMAP model is noted D. The rational model has the following form:

$$O_1 = P_4 P_3^* \left(\sum_{i=0}^N \sum_{j=0}^N \sum_{m=-M}^M K_{ijm} A_3^i A_4^j P_4^{3m} P_3^{*4m} \right) \left(\frac{A_3 A_4}{0.04 + A_3 A_4} \right) \quad (10)$$

where K_{ijm} represents the model parameters. Note that the rational model is chosen such that it behaves like a classical Volterra for values of the product $A_3 A_4$ smaller than 0.04, which corresponds roughly to the limit of “weakly nonlinear behavior”. Next the parameters are extracted for several model orders, as well for the rational approach as for the VIOMAP. The rms errors are given in Table3 (“NofP” denotes the number of

Table3 Root-mean-square errors of the different models.

Model	Degree	NofP	e _{rms} (dBV)
VIO	D = 7	9	-39
VIO	D = 9	17	-42
VIO	D = 11	28	-45
VIO	D = 15	62	-47
RAT	N = 2, M = 1	27	-47
RAT	N = 3, M = 1	48	-48

parameters). The rational model achieves -47dBV with 27 parameters, where the VIOMAP needs 62 parameters for reaching the same level. The above suggest the rational model to be better. More evidence is found looking at the maximum value of the error. For the rational model e_{MAX} is at a level of -37dBV, for the VIOMAP this value equals -31dBV.

D. Interpretation of the rational model

One can then use the rational model ($N=2$, $M=1$) in order to know the behavior of the described resistive mixer. Fig.2 illustrates that,

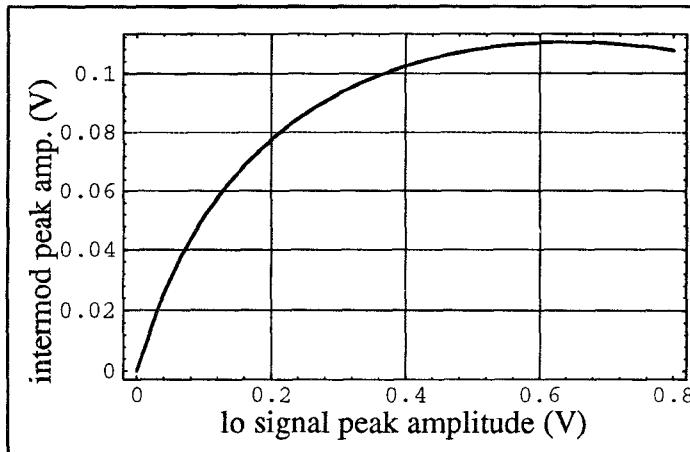


Fig.2 Intermod amp. vs lo amp. (rf amp. 0.2 V)

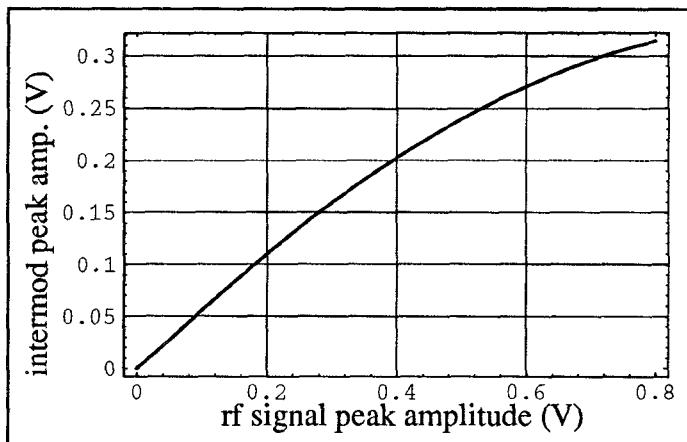


Fig.3 Intermod amp. vs rf amp. (lo amp. 0.6 V)

for a small and constant rf amplitude, the intermod amplitude is no longer a function of the local oscillator amplitude if this local oscillator amplitude is about 0.6V, corresponding to the minimum lo power needed to drive the mixer. Fig.3 shows that the intermod amplitude is a near perfect linear function of the rf amplitude, with some compression present for rf amplitudes greater than 0.4V. Note that the mixer conversion factor is about 0.55, which is close to the theoretical maximum of 0.64 (2 divided by π).

V. Conclusion

The theory, the simulations and the experiments show that the rational models based upon the describing function approach provide better models than the Volterra theory for modelling hard nonlinearities in the frequency domain. It is illustrated how the models can be used in order to understand the mixer behavior.

VI. References

- [1] Mark Vanden Bossche, "Measuring Nonlinear Systems: A Black Box Approach for Instrument Implementation," Doctoral Dissertation, Vrije Universiteit Brussel, Brussels, May 1990.
- [2] J. C. Peyton Jones and S. A. Billings, "Describing functions, Volterra series, and the analysis of non-linear systems in the frequency domain," *Int. J. Control.*, Vol. 53, No. 4, pp. 871-887, 1991.
- [3] Jan Verspecht, "Describing Functions Can Better Model Hard Nonlinearities In The Frequency Domain Than The Volterra Theory," Doctoral Dissertation Annex, Vrije Universiteit Brussel, Brussels, November 1995.
- [4] Stephen A. Maas, "A GaAs MESFET Mixer With Very Low Intermodulation," *IEEE Trans. Microwave Theory and Techn.*, Vol. 35, No. 4, pp. 425-429, 1987.
- [5] Jan Verspecht, Peter Debie, Alain Barel and Luc Martens, "Accurate On Wafer Measurement Of Phase And Amplitude Of The Spectral Components Of Incident And Scattered Voltage Waves At The Signal Ports Of A Nonlinear Microwave Device," *Conference Record of the IEEE Microwave Theory and Techniques Symposium 1995*, Orlando, Florida, USA, pp. 1029-1032, May 1995.
- [6] Jan Verspecht, "Calibration of a Measurement System for High Frequency Nonlinear Devices," Doctoral Dissertation, Vrije Universiteit Brussel, Brussels, November 1995.