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Abstract — A black box model is
proposed to describe nonlinear devices in
the frequency domain. The approach is
based upon the use of describing functions
and allows a better description of hard
nonlinearities than an approach based upon
the Volterra theory. Simulations and
experiments are described illustrating the
mathematical theory.

1. Introduction

Describing and measuring nonlinear behavior
of electrical components is important for many
applications. The input signals are often very
well approximated by a sum of sinewaves, a fre-
quency domain approach is then preferred.

Two kinds of black box models are used in
practice for the description of nonlinear systems
in the frequency domain: Volterra series (cf. the
VIOMAP model [1]) and describing functions
[2]. The Volterra series approach can handle
more than one spectral component present at the
input, but the approach only works for weakly
nonlinear behavior. The approach of the describ-
ing functions does not have this restriction. The
idea is to write a spectral output component as a
general function of the spectral input compo-
nents. In practice this technique is only used
when there is only one spectral component
present at the input. In this text the describing
function approach for several spectral input com-
ponents is developed in order to model hard non-
linear behavior in the frequency domain {3].
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II. Theory

A. Expressing time invariance

Consider a nonlinear device with at his input
several spectral components. For simplicity it is
assumed that the frequencies of the spectral com-
ponents are commensurate, such that each fre-
quency can be assigned an integer index, which
equals the frequency divided by the fundamental
frequency. Excluding chaotic and subharmonic
behavior, the output spectrum will consist out of
spectral components with frequencies which are
integer multiples of the fundamental frequency.
This implies that an integer index can be
assigned to each spectral output component.

Consider N spectral input components where
the i component is represented by the complex

number I, with a, equal to the frequency

index. If one denotes the output component with
frequency index k by O, , one can write:

0, = Fk(lal, Ly, ...,IaN). (1)
F,(...) represents the describing function which

maps the N complex numbers representing the

input signal into the k'™ spectral component of
the output signal. It can be shown that expressing
that applying a delay at the input has to corre-
spond to the same delay at the output (time invar-
iance) results in:

0, = (V) ¥G (Afs hAps Vs s Vg (2)
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where Gy represents an arbitrary function (called

describing function) and where

(Al’ ...,AN, Vl’ vees VN) are found by applying

the following transformation on
(Ial, Iaz, ...,IaN):

A= II ail, (3)

V, = PJlL.PM, (4)

- j(p(l“i) ‘ f
with P, = e , and with (sg;, ..., i) for

i ranging from 1 to N equal to N-1 linearly inde-
pendent integer solutions of the equation:

(5)

and with (SIN’ ey SNN) an integer solution of

OSy;+ o FONSN = 0,

the equation:

S Nt TONSNN T 1. (6)
B. Correspondence with the Volterra series

It can be shown that the approach based upon
Volterra series (VIOMAP) is a subset of the
describing function approach (2), where the class
of functions Gy is constrained to a limited set of

polynomials.

III. Simulations

A. Introduction

Simulations illustrate the above. A static nonlin-
earity is chosen described by:
y = tanh (x). a
A simulation of an harmonic distortion analysis
is performed on this system (peak amplitude of the
input cosinusoidal wave swept from 0 to 10). For
each amplitude the value of several harmonics is
calculated. A plot of the fundamental and some
harmonics is shown in Fig. 1.

B. Comparing two parametric models

The performance is compared of two kinds of
parametric models to be fitted on the data: a
VIOMAP model and a rational model, based upon
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Fig.1 Harmonic distortion (harm. 1,3, 5, 7).

describing functions. The models are defined as
(N equals the number of model parameters):

the VIOMAP polynomial (VIO):

N
k 2i+k
o, = (P) ( > KA ) (8)
i=0
the rational model (RAT):
N Al;
O, = (P) | X KA, e 9
i=0 1+A;

The parameters K; of the models (for different
k and N) are estimated by means of a least-square
fit to 200 uniformly sampled points of the har-
monic distortion analysis characteristics. Note
that the rational model is chosen such that it
behaves like a k™ order nonlinearity for A; much
smaller than 1, and as general polynomial for A,
much greater than 1. This way the model behaves
like a classical Volterra approach for small input
amplitudes, but has more flexibility at larger
amplitudes, where the Volterra approach fails.
Two measures are used to compare the models:
the root-mean-square error (e;;,o) and the maxi-
mum error (€p,,). Values are given in Table1 and
Table2.

The simulation reveals that, for the same
number of parameters, RAT outperforms VIO.
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Tablel Quality of the models for the
fundamental (k=1).

N| emms VIO | e RAT | epax VIO | €pax RAT
1| -11dB | 27dB | -3dB | -18dB
3| -19dB | -35d4B | -9dB | -20dB
5| 26dB | -41dB | -1sdB | -27dB

Table2 Quality of the models for the 7th
harmonic (k=7).

N| €ms VIO | €ms RAT | ez VIO I emax RAT
1| -28dB | -31dB | -19dB | -22dB |
5| -394B | -65dB | -29dB | -52dB

9| -2904B | -91dB | -20dB | -784B

IV. Experiments

A. Introduction

A resistive mixer {4] experiment is performed
on a broadband field effect transistor using a
“nonlinear network™ analyzer [5][6]. The local
oscillator (lo) signal (3GHz) is a voltage wave
arriving at the gate of the transistor, while the rf-
signal (4GHz) is a voltage wave send towards the
drain of the transistor (no dc-biasing present).
The scattered voltage wave at the drain contains
a lot of intermodulation products, with the two
most important ones being the intermodulation
products at 1GHz and 7GHz. To illustrate the
theory, only the mixing product at 1GHz is con-
sidered.

B. The measurements

A set of two-tone measurements is performed
on the “resistive mixer”: the local oscillator as
well as the rf-signal peak amplitude are swept
from about 100mV to 800mV. There are 16 dif-
ferent values for the local oscillator power and 21
for the rf-signal amplitude, logarithmically dis-
tributed over the range. At each power setting the
phase relationship between the two components
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is randomized 30 times. This results in a set of 21
times 16 times 30 equals 10080 measurements.

C. Modelling

Two models are fit on the measured data: a
VIOMAP and a rational model. The polynomial
degree of the VIOMAP model is noted D. The
rational model has the following form:

o, =
N N M L. A A
* i, jpim_*4m 374
P4P3[ 2 2 X KjnAAP, P )[0——__.04+A A)
i=0j=0m=-M 374
, (10)

where K, represents the model parameters.
Note that the rational model is chosen such that it
behaves like a classical Volterra for values of the
product A3A 4 smaller than 0.04, which corre-

sponds roughly to the limit of “weakly nonlinear
behavior”. Next the parameters are extracted for
several model orders, as well for the rational
approach as for the VIOMAP. The rms errors are
given in Table3 (“NofP” denotes the number of

Table3 Root-mean-square errors of the
different models.

Model Degree NofP | e, (dBV)
VIO D=7 9 -39
VIO D=9 17 -42
VIO D=11 28 -45
VIO D=15 62 -47
RAT |N=2,M=1 27 -47
RAT |N=3,M=1 48 -48

parameters). The rational model achieves -47dBV
with 27 parameters, where the VIOMAP needs 62
parameters for reaching the same level. The above
suggest the rational model to be better. More evi-
dence is found looking at the maximum value of
the error. For the rational model ep5x is at a level
of -37dBV, for the VIOMAP this value equals -
31dBV.



D. Interpretation of the rational model

One can then use the rational model (N=2,
M=1) in order to know the behavior of the
described resistive mixer. Fig.2 illustrates that,
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Fig.3 Intermod amp. vs rf amp. (lo amp. 0.6V)
for a small and constant rf amplitude, the inter-
mod amplitude is no longer a function of the
local oscillator amplitude if this local oscillator
amplitude is about 0.6V, corresponding to the
minimum lo power needed to drive the mixer.
Fig.3 shows that the intermod amplitude is a near
pertfect linear function of the rf amplitude, with
some compression present for rf amplitudes
greater than 0.4 V. Note that the mixer conversion
factor is about 0.55, which is close to the theoret-
ical maximum of 0.64 (2 divided by Pi).
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V. Conclusion

The theory, the simulations and the experi-
ments show that the rational models based upon
the describing function approach provide better
models than the Volterra theory for modelling
hard nonlinearities in the frequency domain. It is
illustrated how the models can be used in order to
understand the mixer behavior.
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