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Abstract — A black box model is

proposed to describe nonlinear devices in
the frequency domain. The approach is

based upon the use of describing functions

and allows a better description of hard

nonlinearities than an approach based upon

the Volterra theory. Simulations and

experiments are described illustrating the

mathematical theory.

I. Introduction

Describing and measuring nonlinear behavior

of electricrd components is important for many

applications. The input signals are often very

well approximated by a sum of sinewaves, a fre-
quency domain approach is then preferred.

Two kinds of black box models are used in
practice for the description of nonlinear systems
in the frequency domain: Volterra series (cf. the

VIOMAP model [1]) and describing functions

[2]. The Volterra series approach can handle
more than one spectral component present at the

input, but the approach only works for weakly

nonlinear behavior. The approach of the describ-

ing functions does not have this restriction. The
idea is to write a spectral output component as a

general function of the spectral input compo-
nents. In practice this technique is only used

when there is only one spectral component

present at the input. In this text the describing
function approach for several spectral input com-
ponents is developed in order to model hard non-

linear behavior in the frequency domain [3].

II. Theory

A. Expressing time invariance

Consider a nonlinear device with at his input

several spectral components. For simplicity it is

assumed that the frequencies of the spectral com-

ponents are commensurate, such that each fre-
quency can be assigned an integer index, which

equals the frequency divided by the fundamental

frequency. Excluding chaotic and subharmonic

behavior, the output spectrum will consist out of
spectral components with frequencies which are

integer multiples of the fundamental frequency.

This implies that an integer index can be

assigned to each spectral output component.

Consider N spectral input components where

the iti component is represented by the complex

number Iu , with txi equal to the frequency
i

index. If one denotes the output component with

frequency index k by Ok, one can write:

ok
[

=Fk Ia, Ia, I
12 )

. . . . ~N . (1)

Fk(...) represents the describing function which

maps the N complex numbers representing the

input signal into the km spectral component of

the output signal. It can be shown that expressing
that applying a delay at the input has to corre-

spond to the same delay at the output (time invar- m

iance) results in:

ok = (v~)kGk (Al, ...+. VI, ...>vN _ ~) (2)
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where Gk represents an arbitrary function (called

describing function) and where

(Al> ....AN. VI, ...>VN) are found by applying

the following transformation on

[ )Ia , Ia ,...,1 :
12 aN

vi = p~liooopsNi
N’

[)
J9 Iai

with pi = e , and with (sli> .... sNi) fOr

(3)

(4)

i ranging from 1 to N equal to N-1 linearly inde-

pendent integer solutions of the equation:

. +- ...
alsll + aNsNi =

o, (5)

and with (s ~N, . . . . SNN) an integer solution of

the equation:

alslN + ... + aNsNN =
1. (6)

B. Correspondence with the Volterra series

It can be shown that the approach based upon

Volterra series (VIOMAP) is a subset of the

describing function approach (2), where the class
of functions Gk is constrained to a limited set of

polynomials.

III. Simulations

A. Introduction

Simulations illustrate the above. A static nonlin-
earity is chosen described by:

y = tanh (X) . (7)

A simulation of an harmonic distortion analysis
is performed on this system (peak amplitude of the

input cosinusoidal wave swept from O to 10). For

each amplitude the value of several harmonics is
calculated. A plot of the fundamental and some
harmonics is shown in Fig. 1.

B. Comparing two parametric models

The performance is compared of two kinds of

parametric models to be fitted on the data: a

VIOMAP model and a rational model, based upon
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Fig. 1 Harmonic distortion (harm. 1,3,5, 7).

describing functions. The models are defined as
(N equals the number of model parameters):

the VIOMAP polynomial (VIO):

ok=‘pl)k[i;~iA;‘8)
the rational model (RAT):

The parameters Ki of the models (for different

k and N) are estimated by means of a least-square

fit to 200 uniformly sampled points of the har-

monic distortion analysis characteristics. Note

that the rational model is chosen such that it

behaves like a kti order nonlinearity for Al much

smaller than 1, and as general polynomial for Al

much greater than 1. This way the model behaves
like a classical Volterra approach for small input

amplitudes, but has more flexibility at larger

amplitudes, where the Volterra approach fails.

Two measures are used to compare the models:
the root-mean-square error (~~) and the maxi-

mum error (ems). Values are given in Table 1 and

Table2.

The simulation reveals that, for the same
number of parameters, RAT outperforms VIO.
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Tablel Quality of the models for the

fundamental (k=l).

N ems VIO ~~ RAT ~m VIO em= RAT

1 -lldB -27dB -3dB -18dB

3 -19dB -35dB -9d13 -20dB

5 -26dB -41 dB -15dB -27dB

Table2 Quality of the models for the 7th

harmonic (k=7).

N ~ VIO ~~ RAT emu VIO emm RAT

1 -28dB -31 dB -19dB -22dB

5 -39dB -65 dB -29dB -52dB

9 -29dB -91 dB -20dB -78dB

IV. Experiments

A, Introduction

A resistive mixer [4] experiment is performed

on a broadband field effect transistor using a
“nonlinear network” analyzer [5] [6]. The local

oscillator (lo) signal (3 GHz) is a voltage wave

arriving at the gate of the transistor, while the rf-

signal (4GHz) is a voltage wave send towards the

drain of the transistor (no de-biasing present).
The scattered voltage wave at the drain contains

a lot of intermodulation products, with the two
most important ones being the intermodulation
products at lGHz and 7 GHz. To illustrate the

theory, only the mixing product at 1GHz is con-

sidered.

B. The measurements

A set of two-tone measurements is performed
on the “resistive mixer”: the local oscillator as

well as the rf-signal peak amplitude are swept
from about 100mV to 800mV. There are 16 dif-

ferent values for the local oscillator power and 21
for the rf-signal amplitude, logarithmically dis-

tributed over the range. At each power setting the
phase relationship between the two components

is randomized 30 times. This results in a set of 21

times 16 times 30 equals 10080 measurements.

C. Modelling

Two models are fit on the measured data: a

VIOMAP and a rational model. The polynomial
degree of the VIOMAP model is noted D. The
rational model has the following form:

01 =

[

NNM

“ *4m)[oJ’&l
“p; X X Z ‘ijmA~A~p~mp3

i=(Jj=Om =-M

9 (lo)

where Kijm represents the model parameters.

Note that the rational model is chosen such that it

behaves like a classical Volterra for values of the

product A3A4 smaller than 0.04, which corre-

sponds roughly to the limit of “weakly nonlinear

behavior”. Next the parameters are extracted for

several model orders, as well for the rational

approach as for the VIOMAP. The rms errors are

given in Table 3 (“NofP” denotes the number of

Table3 Root-mean-square errors of the
different models.

Model Degree NofP %s (dBV)

VIO D=7 9 -39

VIO D=9 17 -42

VIO D=ll 28 -45

VIO D=15 62 -47

RAT N=2, M=1 27 -47

I RAT IN=3, M=11 48 I -48 I
parameters). The rational model achieves -47dBV
with 27 parameters, where the VIOMAP needs 62
parameters for reaching the same level. The above
suggest the rational model to be better. More evi-
dence is found looking at the maximum value of
the error. For the rational model eMAx is at a level

of -37 dBV, for the VIOMAP this value equals -

31 dBV.
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D. Interpretation of the rational model

One can then use the rational model (N=2,
M=l) in order to know the behavior of the

described resistive mixer. Fig.2 illustrates that,

_ 0.1

10 signal peak amplitude (V) I
Fig.2 Intermod amp. vs 10 amp. (rf amp. 0.2V)

0.3

Fig.3 Intermod amp. vs rf amp. (10 amp. 0.6V)

for a small and constant rf amplitude, the inter-
mod amplitude is no longer a function of the
local oscillator amplitude if this local oscillator

amplitude is about 0.6V, corresponding to the
minimum 10 power needed to drive the mixer,

Fig. 3 shows that the intermod amplitude is a near
perfect linear function of the rf amplitude, with

some compression present for rf amplitudes
greater than 0.4V. Note that the mixer conversion
factor is about 0.55, which is close to the theoret-
ical maximum of 0.64 (2 divided by Pi).

V. Conclusion

The theory, the simulations and the experi-

ments show that the rational models based upon

the describing function approach provide better
models than the Volterra theory for modelling

hard nonlinearities in the frequency domain. It is
illustrated how the models can be used in order to

understand the mixer behavior.
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